Prey capture by larval zebrafish: evidence for fine axial motor control.

نویسندگان

  • Melissa A Borla
  • Betsy Palecek
  • Seth Budick
  • Donald M O'Malley
چکیده

Swimming and turning behaviors of larval zebrafish have been described kinematically, but prey capture behaviors are less well characterized. High-speed digital imaging was used to record the axial kinematics of larval zebrafish as they preyed upon paramecia and also during other types of swimming. In all types of swim bouts, a series of traveling waves of bending is observed and these bends propagate along the trunk in the rostral to caudal direction. The prey capture swim bouts appeared to be more complex than other swim patterns examined. In the capture swim bouts, the initial bends were of low amplitude and were most prominent at far-caudal locations during each individual traveling wave of bending. Later bends in the bout (occurring just prior to prey capture) appeared to originate more rostrally and were of larger amplitude. These changes in bending pattern during capture swims were accompanied by a marked increase in tail-beat frequency. Associated with these axial kinematics were changes in heading and an abrupt increase in velocity close to the moment of prey capture. These changing patterns of bending suggest precise, bend-to-bend, neural control over both the timing and the rostral-caudal locus of bending. This degree of 'fine axial motor control' has not previously been described in the teleost behavioral literature and is notable because it occurs in larval zebrafish, where descending control signals are funneled through the roughly three-hundred neurons that project from brain into spinal cord. These findings will necessitate a significant increase in the complexity of current models of descending motor control in fishes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of locomotor maneuvers, and improving sensory capabilities, give rise to the flexible homing strikes of juvenile zebrafish

At 5 days post-fertilization and 4 mm in length, zebrafish larvae are successful predators of mobile prey items. The tracking and capture of 200 μm long Paramecia requires efficient sensorimotor transformations and precise neural controls that activate axial musculature for orientation and propulsion, while coordinating jaw muscle activity to engulf them. Using high-speed imaging, we report str...

متن کامل

[Visual system and prey capture behavior of larval zebrafish].

Studying neural circuits is a crucial step for understanding neural mechanisms underlying animal behaviors. Larval zebrafish is a low vertebrate animal model with incomparable advantages in neural circuit study. In this review, we describe the zebrafish visual system and its downstream targets, with special emphasis on their possible roles in prey capture behavior. Prey capture is executed main...

متن کامل

Appetite for destruction: neuron ablations, prey capture, and sensorimotor integration in larval zebrafish.

Editor's Note: These short reviews of a recent paper in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to mimic the journal clubs that exist in your own departments or institutions. For more information on the format and purpose of the Journal Club, please see Review of Gahtan et al. Neuroethology has developed as a branch of neuroscience with the ex...

متن کامل

Neurokinematic modeling of complex swimming patterns of the larval zebrafish

Larval zebrafish exhibit a variety of complex undulatory swimming patterns. This repertoire is controlled by the 300 neurons projecting from brain into spinal cord. Understanding how descending control signals shape the output of spinal circuits, however, is nontrivial. We have therefore developed a segmental oscillator model (using NEURON) to investigate this system. We found that adjusting th...

متن کامل

Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum.

Many vertebrates are efficient hunters and recognize their prey by innate neural mechanisms. During prey capture, the internal representation of the prey's location must be constantly updated and made available to premotor neurons that convey the information to spinal motor circuits. We studied the neural substrate of this specialized visuomotor system using high-speed video recordings of larva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain, behavior and evolution

دوره 60 4  شماره 

صفحات  -

تاریخ انتشار 2002